Public Member Functions | List of all members
aspect::Postprocess::VisualizationPostprocessors::GrainLagAngle< dim > Class Template Reference
Inheritance diagram for aspect::Postprocess::VisualizationPostprocessors::GrainLagAngle< dim >:
Inheritance graph

Public Member Functions

virtual std::pair< std::string, Vector< float > * > execute () const
- Public Member Functions inherited from aspect::Postprocess::VisualizationPostprocessors::CellDataVectorCreator< dim >
virtual ~CellDataVectorCreator ()=default
- Public Member Functions inherited from aspect::Postprocess::VisualizationPostprocessors::Interface< dim >
virtual ~Interface ()
virtual void initialize ()
virtual void update ()
virtual void parse_parameters (ParameterHandler &prm)
virtual std::list< std::string > required_other_postprocessors () const
virtual void save (std::map< std::string, std::string > &status_strings) const
virtual void load (const std::map< std::string, std::string > &status_strings)
- Public Member Functions inherited from aspect::SimulatorAccess< dim >
 SimulatorAccess ()
 SimulatorAccess (const Simulator< dim > &simulator_object)
virtual ~SimulatorAccess ()
virtual void initialize_simulator (const Simulator< dim > &simulator_object)
template<typename PostprocessorType >
PostprocessorType * find_postprocessor () const
const Introspection< dim > & introspection () const
const Simulator< dim > & get_simulator () const
const Parameters< dim > & get_parameters () const
SimulatorSignals< dim > & get_signals () const
MPI_Comm get_mpi_communicator () const
TimerOutputget_computing_timer () const
const ConditionalOStreamget_pcout () const
double get_time () const
double get_timestep () const
double get_old_timestep () const
unsigned int get_timestep_number () const
unsigned int get_nonlinear_iteration () const
const parallel::distributed::Triangulation< dim > & get_triangulation () const
double get_volume () const
const Mapping< dim > & get_mapping () const
std::string get_output_directory () const
bool include_adiabatic_heating () const
bool include_latent_heat () const
bool include_melt_transport () const
int get_stokes_velocity_degree () const
double get_adiabatic_surface_temperature () const
double get_surface_pressure () const
bool convert_output_to_years () const
unsigned int get_pre_refinement_step () const
unsigned int n_compositional_fields () const
void get_refinement_criteria (Vector< float > &estimated_error_per_cell) const
void get_artificial_viscosity (Vector< float > &viscosity_per_cell, const bool skip_interior_cells=false) const
void get_artificial_viscosity_composition (Vector< float > &viscosity_per_cell, const unsigned int compositional_variable) const
const LinearAlgebra::BlockVectorget_current_linearization_point () const
const LinearAlgebra::BlockVectorget_solution () const
const LinearAlgebra::BlockVectorget_old_solution () const
const LinearAlgebra::BlockVectorget_old_old_solution () const
const LinearAlgebra::BlockVectorget_reaction_vector () const
const LinearAlgebra::BlockVectorget_mesh_velocity () const
const DoFHandler< dim > & get_dof_handler () const
const FiniteElement< dim > & get_fe () const
const LinearAlgebra::BlockSparseMatrixget_system_matrix () const
const LinearAlgebra::BlockSparseMatrixget_system_preconditioner_matrix () const
const MaterialModel::Interface< dim > & get_material_model () const
void compute_material_model_input_values (const LinearAlgebra::BlockVector &input_solution, const FEValuesBase< dim, dim > &input_finite_element_values, const typename DoFHandler< dim >::active_cell_iterator &cell, const bool compute_strainrate, MaterialModel::MaterialModelInputs< dim > &material_model_inputs) const
const GravityModel::Interface< dim > & get_gravity_model () const
const InitialTopographyModel::Interface< dim > & get_initial_topography_model () const
const GeometryModel::Interface< dim > & get_geometry_model () const
const AdiabaticConditions::Interface< dim > & get_adiabatic_conditions () const
bool has_boundary_temperature () const
DEAL_II_DEPRECATED const BoundaryTemperature::Interface< dim > & get_boundary_temperature () const
const BoundaryTemperature::Manager< dim > & get_boundary_temperature_manager () const
const BoundaryHeatFlux::Interface< dim > & get_boundary_heat_flux () const
bool has_boundary_composition () const
DEAL_II_DEPRECATED const BoundaryComposition::Interface< dim > & get_boundary_composition () const
const BoundaryComposition::Manager< dim > & get_boundary_composition_manager () const
const std::map< types::boundary_id, std::unique_ptr< BoundaryTraction::Interface< dim > > > & get_boundary_traction () const
DEAL_II_DEPRECATED const InitialTemperature::Interface< dim > & get_initial_temperature () const
const InitialTemperature::Manager< dim > & get_initial_temperature_manager () const
DEAL_II_DEPRECATED const InitialComposition::Interface< dim > & get_initial_composition () const
const InitialComposition::Manager< dim > & get_initial_composition_manager () const
const std::set< types::boundary_id > & get_fixed_temperature_boundary_indicators () const
const std::set< types::boundary_id > & get_fixed_heat_flux_boundary_indicators () const
const std::set< types::boundary_id > & get_fixed_composition_boundary_indicators () const
const std::set< types::boundary_id > & get_mesh_deformation_boundary_indicators () const
const BoundaryVelocity::Manager< dim > & get_boundary_velocity_manager () const
const HeatingModel::Manager< dim > & get_heating_model_manager () const
const MeshRefinement::Manager< dim > & get_mesh_refinement_manager () const
const MeltHandler< dim > & get_melt_handler () const
const VolumeOfFluidHandler< dim > & get_volume_of_fluid_handler () const
const NewtonHandler< dim > & get_newton_handler () const
const WorldBuilder::World & get_world_builder () const
const MeshDeformation::MeshDeformationHandler< dim > & get_mesh_deformation_handler () const
const LateralAveraging< dim > & get_lateral_averaging () const
const ConstraintMatrix & get_current_constraints () const
bool simulator_is_past_initialization () const
double get_pressure_scaling () const
bool pressure_rhs_needs_compatibility_modification () const
bool model_has_prescribed_stokes_solution () const
TableHandlerget_statistics_object () const
template<typename PostprocessorType >
DEAL_II_DEPRECATED PostprocessorType * find_postprocessor () const
const Postprocess::Manager< dim > & get_postprocess_manager () const

Additional Inherited Members

- Static Public Member Functions inherited from aspect::Postprocess::VisualizationPostprocessors::Interface< dim >
static void declare_parameters (ParameterHandler &prm)
- Static Public Member Functions inherited from aspect::SimulatorAccess< dim >
static void get_composition_values_at_q_point (const std::vector< std::vector< double > > &composition_values, const unsigned int q, std::vector< double > &composition_values_at_q_point)

Detailed Description

template<int dim>
class aspect::Postprocess::VisualizationPostprocessors::GrainLagAngle< dim >

This postprocessor calculates and outputs the angle between the ~infinite strain axis and the velocity. Kaminski & Ribe (2002, Gcubed) call this quantity $\Theta$ and define it as $\Theta = \cos^{-1}(\hat{u}\cdot\hat{e})$ where $\hat{u}=\vec{u}/|{u}|$, $\vec{u}$ is the local flow velocity, and $\hat{e}$ is the local infinite strain axis, which we calculate as the first eigenvector of the "left stretch" tensor. $\Theta$ can be used to calculate the grain orientation lag parameter (GOL). Calculating GOL also requires the ISA rotation timescale ( $\tau_{ISA}$). GOL is not calculated within ASPECT right now because it is proportional to the spatial gradient of $\Theta$, but in the future that calculation could be implemented in a material model with CopyOutputs (once they exist). By tracking $\Theta$ as a CopyOutput (ie, a compositional field holding a calculated value that gets copied over instead of solved for), the spatial gradient of $\Theta$ could be calculated for the previous timestep by obtaining the old solution for the input material model. That gradient, and also the time derivative of $\Theta$, could then be used to calculate GOL at the previous timestep; $\Theta$ could be updated at the current timestep; and both quantities could be stored in CopyOutputs to step forward in time. Basically, the calculation of GOL would have to lag one timestep behind the other quantities in order to get the gradients, but we're often interested in GOL in a steady-state flow anyway.

Definition at line 60 of file grain_lag_angle.h.

Member Function Documentation

§ execute()

template<int dim>
virtual std::pair<std::string, Vector<float> *> aspect::Postprocess::VisualizationPostprocessors::GrainLagAngle< dim >::execute ( ) const

The function classes have to implement that want to output cell-wise data.

A pair of values with the following meaning:
  • The first element provides the name by which this data should be written to the output file.
  • The second element is a pointer to a vector with one element per active cell on the current processor. Elements corresponding to active cells that are either artificial or ghost cells (in deal.II language, see the deal.II glossary) will be ignored but must nevertheless exist in the returned vector. While implementations of this function must create this vector, ownership is taken over by the caller of this function and the caller will take care of destroying the vector pointed to.

Implements aspect::Postprocess::VisualizationPostprocessors::CellDataVectorCreator< dim >.

The documentation for this class was generated from the following file: