ASPECT
Public Member Functions | Static Public Member Functions | Private Types | Private Attributes | List of all members
aspect::MaterialModel::ReactiveFluidTransport< dim > Class Template Reference
Inheritance diagram for aspect::MaterialModel::ReactiveFluidTransport< dim >:
Inheritance graph
[legend]

Public Member Functions

bool is_compressible () const override
 
std::vector< double > tian_equilibrium_bound_water_content (const MaterialModel::MaterialModelInputs< dim > &in, unsigned int q) const
 
void melt_fractions (const MaterialModel::MaterialModelInputs< dim > &in, std::vector< double > &melt_fractions) const override
 
void initialize () override
 
void update () override
 
void evaluate (const typename Interface< dim >::MaterialModelInputs &in, typename Interface< dim >::MaterialModelOutputs &out) const override
 
void parse_parameters (ParameterHandler &prm) override
 
void create_additional_named_outputs (MaterialModel::MaterialModelOutputs< dim > &out) const override
 
Reference quantities
double reference_darcy_coefficient () const override
 
- Public Member Functions inherited from aspect::MaterialModel::MeltInterface< dim >
double p_c_scale (const MaterialModel::MaterialModelInputs< dim > &inputs, const MaterialModel::MaterialModelOutputs< dim > &outputs, const MeltHandler< dim > &melt_handler, const bool consider_is_melt_cell) const
 
- Public Member Functions inherited from aspect::MaterialModel::Interface< dim >
virtual void evaluate (const MaterialModel::MaterialModelInputs< dim > &in, MaterialModel::MaterialModelOutputs< dim > &out) const =0
 
virtual void fill_additional_material_model_inputs (MaterialModel::MaterialModelInputs< dim > &input, const LinearAlgebra::BlockVector &solution, const FEValuesBase< dim > &fe_values, const Introspection< dim > &introspection) const
 
const NonlinearDependence::ModelDependenceget_model_dependence () const
 
- Public Member Functions inherited from aspect::Plugins::InterfaceBase
virtual ~InterfaceBase ()=default
 
- Public Member Functions inherited from aspect::MaterialModel::MeltFractionModel< dim >
virtual ~MeltFractionModel ()=default
 
- Public Member Functions inherited from aspect::SimulatorAccess< dim >
 SimulatorAccess ()
 
 SimulatorAccess (const Simulator< dim > &simulator_object)
 
virtual ~SimulatorAccess ()=default
 
virtual void initialize_simulator (const Simulator< dim > &simulator_object)
 
const Introspection< dim > & introspection () const
 
const Simulator< dim > & get_simulator () const
 
const Parameters< dim > & get_parameters () const
 
SimulatorSignals< dim > & get_signals () const
 
MPI_Comm get_mpi_communicator () const
 
TimerOutput & get_computing_timer () const
 
const ConditionalOStream & get_pcout () const
 
double get_time () const
 
double get_timestep () const
 
double get_old_timestep () const
 
unsigned int get_timestep_number () const
 
const TimeStepping::Manager< dim > & get_timestepping_manager () const
 
unsigned int get_nonlinear_iteration () const
 
const parallel::distributed::Triangulation< dim > & get_triangulation () const
 
double get_volume () const
 
const Mapping< dim > & get_mapping () const
 
std::string get_output_directory () const
 
bool include_adiabatic_heating () const
 
bool include_latent_heat () const
 
bool include_melt_transport () const
 
int get_stokes_velocity_degree () const
 
double get_adiabatic_surface_temperature () const
 
double get_surface_pressure () const
 
bool convert_output_to_years () const
 
unsigned int get_pre_refinement_step () const
 
unsigned int n_compositional_fields () const
 
double get_end_time () const
 
void get_refinement_criteria (Vector< float > &estimated_error_per_cell) const
 
void get_artificial_viscosity (Vector< float > &viscosity_per_cell, const bool skip_interior_cells=false) const
 
void get_artificial_viscosity_composition (Vector< float > &viscosity_per_cell, const unsigned int compositional_variable) const
 
const LinearAlgebra::BlockVectorget_current_linearization_point () const
 
const LinearAlgebra::BlockVectorget_solution () const
 
const LinearAlgebra::BlockVectorget_old_solution () const
 
const LinearAlgebra::BlockVectorget_old_old_solution () const
 
const LinearAlgebra::BlockVectorget_reaction_vector () const
 
const LinearAlgebra::BlockVectorget_mesh_velocity () const
 
const DoFHandler< dim > & get_dof_handler () const
 
const FiniteElement< dim > & get_fe () const
 
const LinearAlgebra::BlockSparseMatrixget_system_matrix () const
 
const LinearAlgebra::BlockSparseMatrixget_system_preconditioner_matrix () const
 
const MaterialModel::Interface< dim > & get_material_model () const
 
const GravityModel::Interface< dim > & get_gravity_model () const
 
const InitialTopographyModel::Interface< dim > & get_initial_topography_model () const
 
const GeometryModel::Interface< dim > & get_geometry_model () const
 
const AdiabaticConditions::Interface< dim > & get_adiabatic_conditions () const
 
bool has_boundary_temperature () const
 
const BoundaryTemperature::Manager< dim > & get_boundary_temperature_manager () const
 
const BoundaryHeatFlux::Interface< dim > & get_boundary_heat_flux () const
 
bool has_boundary_composition () const
 
const BoundaryComposition::Manager< dim > & get_boundary_composition_manager () const
 
const BoundaryTraction::Manager< dim > & get_boundary_traction_manager () const
 
std::shared_ptr< const InitialTemperature::Manager< dim > > get_initial_temperature_manager_pointer () const
 
const InitialTemperature::Manager< dim > & get_initial_temperature_manager () const
 
std::shared_ptr< const InitialComposition::Manager< dim > > get_initial_composition_manager_pointer () const
 
const InitialComposition::Manager< dim > & get_initial_composition_manager () const
 
const std::set< types::boundary_id > & get_fixed_temperature_boundary_indicators () const
 
const std::set< types::boundary_id > & get_fixed_heat_flux_boundary_indicators () const
 
const std::set< types::boundary_id > & get_fixed_composition_boundary_indicators () const
 
const std::set< types::boundary_id > & get_mesh_deformation_boundary_indicators () const
 
const BoundaryVelocity::Manager< dim > & get_boundary_velocity_manager () const
 
const HeatingModel::Manager< dim > & get_heating_model_manager () const
 
const MeshRefinement::Manager< dim > & get_mesh_refinement_manager () const
 
const MeltHandler< dim > & get_melt_handler () const
 
const VolumeOfFluidHandler< dim > & get_volume_of_fluid_handler () const
 
const NewtonHandler< dim > & get_newton_handler () const
 
const MeshDeformation::MeshDeformationHandler< dim > & get_mesh_deformation_handler () const
 
const LateralAveraging< dim > & get_lateral_averaging () const
 
const AffineConstraints< double > & get_current_constraints () const
 
bool simulator_is_past_initialization () const
 
double get_pressure_scaling () const
 
bool pressure_rhs_needs_compatibility_modification () const
 
bool model_has_prescribed_stokes_solution () const
 
TableHandler & get_statistics_object () const
 
const Postprocess::Manager< dim > & get_postprocess_manager () const
 
unsigned int n_particle_managers () const
 
const Particle::Manager< dim > & get_particle_manager (const unsigned int particle_manager_index) const
 
Particle::Manager< dim > & get_particle_manager (const unsigned int particle_manager_index)
 
bool is_stokes_matrix_free ()
 
const StokesMatrixFreeHandler< dim > & get_stokes_matrix_free () const
 
RotationProperties< dim > compute_net_angular_momentum (const bool use_constant_density, const LinearAlgebra::BlockVector &solution, const bool limit_to_top_faces=false) const
 

Static Public Member Functions

static void declare_parameters (ParameterHandler &prm)
 
- Static Public Member Functions inherited from aspect::Plugins::InterfaceBase
static void declare_parameters (ParameterHandler &prm)
 
- Static Public Member Functions inherited from aspect::MaterialModel::MeltFractionModel< dim >
template<typename ModelType >
static bool is_melt_fraction_model (const ModelType &model_object)
 
template<typename ModelType >
static const MeltFractionModel< dim > & as_melt_fraction_model (const ModelType &model_object)
 
- Static Public Member Functions inherited from aspect::SimulatorAccess< dim >
static void get_composition_values_at_q_point (const std::vector< std::vector< double >> &composition_values, const unsigned int q, std::vector< double > &composition_values_at_q_point)
 

Private Types

enum  ReactionScheme { no_reaction, zero_solubility, tian_approximation, katz2003 }
 

Private Attributes

std::unique_ptr< MaterialModel::Interface< dim > > base_model
 
double reference_rho_f
 
double eta_f
 
double fluid_compressibility
 
double shear_to_bulk_viscosity_ratio
 
double min_compaction_visc
 
double max_compaction_visc
 
double reference_permeability
 
double alpha_phi
 
double reference_T
 
double fluid_reaction_time_scale
 
double tian_max_peridotite_water
 
double tian_max_gabbro_water
 
double tian_max_MORB_water
 
double tian_max_sediment_water
 
std::vector< double > LR_peridotite_poly_coeffs {-19.0609, 168.983, -630.032, 1281.84, -1543.14, 1111.88, -459.142, 95.4143, 1.97246}
 
std::vector< double > csat_peridotite_poly_coeffs {0.00115628, 2.42179}
 
std::vector< double > Td_peridotite_poly_coeffs {-15.4627, 94.9716, 636.603}
 
std::vector< double > LR_gabbro_poly_coeffs {-1.81745, 7.67198, -10.8507, 5.09329, 8.14519}
 
std::vector< double > csat_gabbro_poly_coeffs {-0.0176673, 0.0893044, 1.52732}
 
std::vector< double > Td_gabbro_poly_coeffs {-1.72277, 20.5898, 637.517}
 
std::vector< double > LR_MORB_poly_coeffs {-1.78177, 7.50871, -10.4840, 5.19725, 7.96365}
 
std::vector< double > csat_MORB_poly_coeffs {0.0102725, -0.115390, 0.324452, 1.41588}
 
std::vector< double > Td_MORB_poly_coeffs {-3.81280, 22.7809, 638.049}
 
std::vector< double > LR_sediment_poly_coeffs {-2.03283, 10.8186, -21.2119, 18.3351, -6.48711, 8.32459}
 
std::vector< double > csat_sediment_poly_coeffs {-0.150662, 0.301807, 1.01867}
 
std::vector< double > Td_sediment_poly_coeffs {2.83277, -24.7593, 85.9090, 524.898}
 
const std::vector< double > pressure_cutoffs {10, 26, 16, 50}
 
std::vector< std::vector< double > > devolatilization_enthalpy_changes
 
std::vector< std::vector< double > > water_mass_fractions
 
std::vector< std::vector< double > > devolatilization_onset_temperatures
 
ReactionModel::Katz2003MantleMelting< dim > katz2003_model
 
enum aspect::MaterialModel::ReactiveFluidTransport::ReactionScheme fluid_solid_reaction_scheme
 

Additional Inherited Members

- Public Types inherited from aspect::MaterialModel::Interface< dim >
using MaterialModelInputs = MaterialModel::MaterialModelInputs< dim >
 
using MaterialModelOutputs = MaterialModel::MaterialModelOutputs< dim >
 
- Protected Attributes inherited from aspect::MaterialModel::Interface< dim >
NonlinearDependence::ModelDependence model_dependence
 

Detailed Description

template<int dim>
class aspect::MaterialModel::ReactiveFluidTransport< dim >

A material model that simulates both fluid-rock interactions and the advection of fluids. It is designed to be composited with another material model that computes the solid material properties.

Definition at line 50 of file reactive_fluid_transport.h.

Member Enumeration Documentation

§ ReactionScheme

Enumeration for selecting which type of scheme to use for reactions between fluids and solids. The available reaction models are described below.

The no reaction model does not include any reactions between the solid and fluid phases. As a result, there is no exchange between the bound fluid and porosity compositional fields. However, the values of each field may vary through the model evolution through advection from their initial configurations.

The zero solubility model describes a scenario where the solid cannot accommodate any fluid (i.e., zero solubility). The fluid volume fraction in equilibrium with the solid at any point (stored in the melt_fractions vector) is equal to the sum of the bound fluid content and porosity, with the latter determined by the assigned initial porosity, fluid boundary conditions, and fluid transport through the model. Significantly, this reaction model is thus assuming that the bound water fraction is a volume fraction (i.e., since porosity is always a volume fraction). This latter assumption also requires the selected base model to be incompressible, as otherwise the advection equation would only be valid for mass and not volume fractions.

The tian approximation model implements parametrized phase diagrams from Tian et al., 2019 G3, https://doi.org/10.1029/2019GC008488 and calculates the fluid-solid reactions for four different rock types: sediments, MORB, gabbro and peridotite. This is achieved by calculating the maximum allowed bound water content for each composition at the current Pressure-Temperature conditions, and releasing bound water as free water if: (maximum bound water content < current bound water content) or incorporating free water (if present) into the solid phase as bound water: maximum bound water content > current bound water content This model requires that 4 compositional fields named after the 4 different rock types exist in the input file.

The Katz2003 model implements anhydrous the mantle melting model from Katz et. al., 2003 G3, doi:10.1029/2002GC000433.

Enumerator
no_reaction 
zero_solubility 
tian_approximation 
katz2003 

Definition at line 263 of file reactive_fluid_transport.h.

Member Function Documentation

§ is_compressible()

template<int dim>
bool aspect::MaterialModel::ReactiveFluidTransport< dim >::is_compressible ( ) const
overridevirtual

Return whether the model is compressible or not. Incompressibility does not necessarily imply that the density is constant; rather, it may still depend on temperature or pressure. In the current context, compressibility means whether we should solve the continuity equation as \(\nabla \cdot (\rho \mathbf u)=0\) (compressible Stokes) or as \(\nabla \cdot \mathbf{u}=0\) (incompressible Stokes).

Implements aspect::MaterialModel::Interface< dim >.

§ reference_darcy_coefficient()

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::reference_darcy_coefficient ( ) const
overridevirtual

Reference value for the Darcy coefficient, which is defined as permeability divided by fluid viscosity. Units: m^2/Pa/s.

Implements aspect::MaterialModel::MeltInterface< dim >.

§ tian_equilibrium_bound_water_content()

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::tian_equilibrium_bound_water_content ( const MaterialModel::MaterialModelInputs< dim > &  in,
unsigned int  q 
) const

Compute the maximum allowed bound water content at the input pressure and temperature conditions. This is used to determine how free water interacts with the solid phase.

Parameters
inObject that contains the current conditions.
qunsigned int from 0-3 indexing which rock phase the equilbrium bound water content is being calculated for

§ melt_fractions()

template<int dim>
void aspect::MaterialModel::ReactiveFluidTransport< dim >::melt_fractions ( const MaterialModel::MaterialModelInputs< dim > &  in,
std::vector< double > &  melt_fractions 
) const
overridevirtual

Compute the free fluid fraction that can be present in the material based on the fluid content of the material and the fluid solubility for the given input conditions. in and melt_fractions need to have the same size.

Parameters
inObject that contains the current conditions.
melt_fractionsVector of doubles that is filled with the allowable free fluid fraction for each given input conditions.

Implements aspect::MaterialModel::MeltFractionModel< dim >.

§ initialize()

template<int dim>
void aspect::MaterialModel::ReactiveFluidTransport< dim >::initialize ( )
overridevirtual

Initialize the base model at the beginning of the model run Initialization function. This function is called once at the beginning of the program after parse_parameters() is run and after the SimulatorAccess (if applicable) is initialized.

The default implementation of this function does nothing, but plugins that derive from this class (via the Interface classes of their respective plugin systems) may overload it if they want something to happen upon startup of the Simulator object to which the plugin contributes.

Reimplemented from aspect::Plugins::InterfaceBase.

§ update()

template<int dim>
void aspect::MaterialModel::ReactiveFluidTransport< dim >::update ( )
overridevirtual

Update the base model at the beginning of each timestep.

Reimplemented from aspect::Plugins::InterfaceBase.

§ evaluate()

template<int dim>
void aspect::MaterialModel::ReactiveFluidTransport< dim >::evaluate ( const typename Interface< dim >::MaterialModelInputs in,
typename Interface< dim >::MaterialModelOutputs out 
) const
override

Function to compute the material properties in out given the inputs in in.

§ declare_parameters()

template<int dim>
static void aspect::MaterialModel::ReactiveFluidTransport< dim >::declare_parameters ( ParameterHandler &  prm)
static

Declare the parameters the plugin takes through input files. The default implementation of this function does not describe any parameters. Consequently, derived classes do not have to overload this function if they do not take any runtime parameters. On the other hand, most plugins do have run-time parameters, and they may then overload this function.

§ parse_parameters()

template<int dim>
void aspect::MaterialModel::ReactiveFluidTransport< dim >::parse_parameters ( ParameterHandler &  prm)
overridevirtual

Read the parameters this class declares from the parameter file. The default implementation of this function does not read any parameters. Consequently, derived classes do not have to overload this function if they do not take any runtime parameters. On the other hand, most plugins do have run-time parameters, and they may then overload this function.

Reimplemented from aspect::Plugins::InterfaceBase.

§ create_additional_named_outputs()

template<int dim>
void aspect::MaterialModel::ReactiveFluidTransport< dim >::create_additional_named_outputs ( MaterialModel::MaterialModelOutputs< dim > &  out) const
overridevirtual

If this material model can produce additional named outputs that are derived from NamedAdditionalOutputs, create them in here.

Reimplemented from aspect::MaterialModel::Interface< dim >.

Member Data Documentation

§ base_model

template<int dim>
std::unique_ptr<MaterialModel::Interface<dim> > aspect::MaterialModel::ReactiveFluidTransport< dim >::base_model
private

Pointer to the material model used as the base model

Definition at line 134 of file reactive_fluid_transport.h.

§ reference_rho_f

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::reference_rho_f
private

Variables that describe the properties of the fluid, i.e. its density, viscosity, and compressibility. Properties of the solid are defined in the base model.

Definition at line 141 of file reactive_fluid_transport.h.

§ eta_f

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::eta_f
private

Definition at line 142 of file reactive_fluid_transport.h.

§ fluid_compressibility

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::fluid_compressibility
private

Definition at line 143 of file reactive_fluid_transport.h.

§ shear_to_bulk_viscosity_ratio

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::shear_to_bulk_viscosity_ratio
private

Material properties governing the transport of the fluid with respect to the solid, i.e., the bulk viscosity (relative to the shear viscosity), the permeability, and how much the solid viscosity changes in the presence of fluids.

Definition at line 151 of file reactive_fluid_transport.h.

§ min_compaction_visc

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::min_compaction_visc
private

Definition at line 152 of file reactive_fluid_transport.h.

§ max_compaction_visc

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::max_compaction_visc
private

Definition at line 153 of file reactive_fluid_transport.h.

§ reference_permeability

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::reference_permeability
private

Definition at line 154 of file reactive_fluid_transport.h.

§ alpha_phi

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::alpha_phi
private

Definition at line 155 of file reactive_fluid_transport.h.

§ reference_T

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::reference_T
private

Definition at line 156 of file reactive_fluid_transport.h.

§ fluid_reaction_time_scale

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::fluid_reaction_time_scale
private

Time scale for fluid release and absorption.

Definition at line 161 of file reactive_fluid_transport.h.

§ tian_max_peridotite_water

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::tian_max_peridotite_water
private

The maximum water content for each of the 4 rock types in the tian approximation method. These are important for keeping the polynomial bounded within reasonable values.

Definition at line 168 of file reactive_fluid_transport.h.

§ tian_max_gabbro_water

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::tian_max_gabbro_water
private

Definition at line 169 of file reactive_fluid_transport.h.

§ tian_max_MORB_water

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::tian_max_MORB_water
private

Definition at line 170 of file reactive_fluid_transport.h.

§ tian_max_sediment_water

template<int dim>
double aspect::MaterialModel::ReactiveFluidTransport< dim >::tian_max_sediment_water
private

Definition at line 171 of file reactive_fluid_transport.h.

§ LR_peridotite_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::LR_peridotite_poly_coeffs {-19.0609, 168.983, -630.032, 1281.84, -1543.14, 1111.88, -459.142, 95.4143, 1.97246}
private

The following coefficients are taken from a publication from Tian et al., 2019, and can be found in Table 3 (Gabbro), Table B1 (MORB), Table B2 (Sediments) and Table B3 (peridotite). LR refers to the effective enthalpy change for devolatilization reactions, csat is the saturated mass fraction of water in the solid, and Td is the onset temperature of devolatilization for water.

Definition at line 181 of file reactive_fluid_transport.h.

§ csat_peridotite_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::csat_peridotite_poly_coeffs {0.00115628, 2.42179}
private

Definition at line 182 of file reactive_fluid_transport.h.

§ Td_peridotite_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::Td_peridotite_poly_coeffs {-15.4627, 94.9716, 636.603}
private

Definition at line 183 of file reactive_fluid_transport.h.

§ LR_gabbro_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::LR_gabbro_poly_coeffs {-1.81745, 7.67198, -10.8507, 5.09329, 8.14519}
private

Definition at line 185 of file reactive_fluid_transport.h.

§ csat_gabbro_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::csat_gabbro_poly_coeffs {-0.0176673, 0.0893044, 1.52732}
private

Definition at line 186 of file reactive_fluid_transport.h.

§ Td_gabbro_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::Td_gabbro_poly_coeffs {-1.72277, 20.5898, 637.517}
private

Definition at line 187 of file reactive_fluid_transport.h.

§ LR_MORB_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::LR_MORB_poly_coeffs {-1.78177, 7.50871, -10.4840, 5.19725, 7.96365}
private

Definition at line 189 of file reactive_fluid_transport.h.

§ csat_MORB_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::csat_MORB_poly_coeffs {0.0102725, -0.115390, 0.324452, 1.41588}
private

Definition at line 190 of file reactive_fluid_transport.h.

§ Td_MORB_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::Td_MORB_poly_coeffs {-3.81280, 22.7809, 638.049}
private

Definition at line 191 of file reactive_fluid_transport.h.

§ LR_sediment_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::LR_sediment_poly_coeffs {-2.03283, 10.8186, -21.2119, 18.3351, -6.48711, 8.32459}
private

Definition at line 193 of file reactive_fluid_transport.h.

§ csat_sediment_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::csat_sediment_poly_coeffs {-0.150662, 0.301807, 1.01867}
private

Definition at line 194 of file reactive_fluid_transport.h.

§ Td_sediment_poly_coeffs

template<int dim>
std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::Td_sediment_poly_coeffs {2.83277, -24.7593, 85.9090, 524.898}
private

Definition at line 195 of file reactive_fluid_transport.h.

§ pressure_cutoffs

template<int dim>
const std::vector<double> aspect::MaterialModel::ReactiveFluidTransport< dim >::pressure_cutoffs {10, 26, 16, 50}
private

The polynomials breakdown above certain pressures, 10 GPa for peridotite, 26 GPa for gabbro, 16 GPa for MORB, and 50 GPa for sediment. These cutoff pressures were determined by extending the pressure range in Tian et al. (2019) and observing where the maximum allowed water contents jump towards infinite values.

Definition at line 202 of file reactive_fluid_transport.h.

§ devolatilization_enthalpy_changes

template<int dim>
std::vector<std::vector<double> > aspect::MaterialModel::ReactiveFluidTransport< dim >::devolatilization_enthalpy_changes
private

§ water_mass_fractions

template<int dim>
std::vector<std::vector<double> > aspect::MaterialModel::ReactiveFluidTransport< dim >::water_mass_fractions
private

§ devolatilization_onset_temperatures

template<int dim>
std::vector<std::vector<double> > aspect::MaterialModel::ReactiveFluidTransport< dim >::devolatilization_onset_temperatures
private

§ katz2003_model

template<int dim>
ReactionModel::Katz2003MantleMelting<dim> aspect::MaterialModel::ReactiveFluidTransport< dim >::katz2003_model
private

Definition at line 219 of file reactive_fluid_transport.h.

§ fluid_solid_reaction_scheme


The documentation for this class was generated from the following file: