ASPECT
Public Member Functions | Private Member Functions | Private Attributes | List of all members
aspect::MaterialModel::LatentHeatMelt< dim > Class Template Reference
Inheritance diagram for aspect::MaterialModel::LatentHeatMelt< dim >:
Inheritance graph
[legend]

Public Member Functions

virtual void melt_fractions (const MaterialModel::MaterialModelInputs< dim > &in, std::vector< double > &melt_fractions) const
 
Physical parameters used in the basic equations
virtual void evaluate (const MaterialModel::MaterialModelInputs< dim > &in, MaterialModel::MaterialModelOutputs< dim > &out) const
 
Qualitative properties one can ask a material model
virtual bool is_compressible () const
 
Reference quantities
virtual double reference_viscosity () const
 
- Public Member Functions inherited from aspect::MaterialModel::Interface< dim >
virtual ~Interface ()
 
virtual void initialize ()
 
virtual void update ()
 
virtual void create_additional_named_outputs (MaterialModelOutputs &outputs) const
 
virtual void fill_additional_material_model_inputs (MaterialModel::MaterialModelInputs< dim > &input, const LinearAlgebra::BlockVector &solution, const FEValuesBase< dim > &fe_values, const Introspection< dim > &introspection) const
 
const NonlinearDependence::ModelDependenceget_model_dependence () const
 
- Public Member Functions inherited from aspect::SimulatorAccess< dim >
 SimulatorAccess ()
 
 SimulatorAccess (const Simulator< dim > &simulator_object)
 
virtual ~SimulatorAccess ()
 
virtual void initialize_simulator (const Simulator< dim > &simulator_object)
 
template<typename PostprocessorType >
PostprocessorType * find_postprocessor () const
 
const Introspection< dim > & introspection () const
 
const Simulator< dim > & get_simulator () const
 
const Parameters< dim > & get_parameters () const
 
SimulatorSignals< dim > & get_signals () const
 
MPI_Comm get_mpi_communicator () const
 
TimerOutputget_computing_timer () const
 
const ConditionalOStreamget_pcout () const
 
double get_time () const
 
double get_timestep () const
 
double get_old_timestep () const
 
unsigned int get_timestep_number () const
 
unsigned int get_nonlinear_iteration () const
 
const parallel::distributed::Triangulation< dim > & get_triangulation () const
 
double get_volume () const
 
const Mapping< dim > & get_mapping () const
 
std::string get_output_directory () const
 
bool include_adiabatic_heating () const
 
bool include_latent_heat () const
 
bool include_melt_transport () const
 
int get_stokes_velocity_degree () const
 
double get_adiabatic_surface_temperature () const
 
double get_surface_pressure () const
 
bool convert_output_to_years () const
 
unsigned int get_pre_refinement_step () const
 
unsigned int n_compositional_fields () const
 
void get_refinement_criteria (Vector< float > &estimated_error_per_cell) const
 
void get_artificial_viscosity (Vector< float > &viscosity_per_cell, const bool skip_interior_cells=false) const
 
void get_artificial_viscosity_composition (Vector< float > &viscosity_per_cell, const unsigned int compositional_variable) const
 
const LinearAlgebra::BlockVectorget_current_linearization_point () const
 
const LinearAlgebra::BlockVectorget_solution () const
 
const LinearAlgebra::BlockVectorget_old_solution () const
 
const LinearAlgebra::BlockVectorget_old_old_solution () const
 
const LinearAlgebra::BlockVectorget_reaction_vector () const
 
const LinearAlgebra::BlockVectorget_mesh_velocity () const
 
const DoFHandler< dim > & get_dof_handler () const
 
const FiniteElement< dim > & get_fe () const
 
const LinearAlgebra::BlockSparseMatrixget_system_matrix () const
 
const LinearAlgebra::BlockSparseMatrixget_system_preconditioner_matrix () const
 
const MaterialModel::Interface< dim > & get_material_model () const
 
void compute_material_model_input_values (const LinearAlgebra::BlockVector &input_solution, const FEValuesBase< dim, dim > &input_finite_element_values, const typename DoFHandler< dim >::active_cell_iterator &cell, const bool compute_strainrate, MaterialModel::MaterialModelInputs< dim > &material_model_inputs) const
 
const GravityModel::Interface< dim > & get_gravity_model () const
 
const InitialTopographyModel::Interface< dim > & get_initial_topography_model () const
 
const GeometryModel::Interface< dim > & get_geometry_model () const
 
const AdiabaticConditions::Interface< dim > & get_adiabatic_conditions () const
 
bool has_boundary_temperature () const
 
DEAL_II_DEPRECATED const BoundaryTemperature::Interface< dim > & get_boundary_temperature () const
 
const BoundaryTemperature::Manager< dim > & get_boundary_temperature_manager () const
 
const BoundaryHeatFlux::Interface< dim > & get_boundary_heat_flux () const
 
bool has_boundary_composition () const
 
DEAL_II_DEPRECATED const BoundaryComposition::Interface< dim > & get_boundary_composition () const
 
const BoundaryComposition::Manager< dim > & get_boundary_composition_manager () const
 
const std::map< types::boundary_id, std::unique_ptr< BoundaryTraction::Interface< dim > > > & get_boundary_traction () const
 
DEAL_II_DEPRECATED const InitialTemperature::Interface< dim > & get_initial_temperature () const
 
const InitialTemperature::Manager< dim > & get_initial_temperature_manager () const
 
DEAL_II_DEPRECATED const InitialComposition::Interface< dim > & get_initial_composition () const
 
const InitialComposition::Manager< dim > & get_initial_composition_manager () const
 
const std::set< types::boundary_id > & get_fixed_temperature_boundary_indicators () const
 
const std::set< types::boundary_id > & get_fixed_heat_flux_boundary_indicators () const
 
const std::set< types::boundary_id > & get_fixed_composition_boundary_indicators () const
 
const std::set< types::boundary_id > & get_free_surface_boundary_indicators () const
 
DEAL_II_DEPRECATED const std::map< types::boundary_id, std::shared_ptr< BoundaryVelocity::Interface< dim > > > get_prescribed_boundary_velocity () const
 
const BoundaryVelocity::Manager< dim > & get_boundary_velocity_manager () const
 
const HeatingModel::Manager< dim > & get_heating_model_manager () const
 
const MeshRefinement::Manager< dim > & get_mesh_refinement_manager () const
 
const MeltHandler< dim > & get_melt_handler () const
 
const VolumeOfFluidHandler< dim > & get_volume_of_fluid_handler () const
 
const NewtonHandler< dim > & get_newton_handler () const
 
const WorldBuilder::World & get_world_builder () const
 
const FreeSurfaceHandler< dim > & get_free_surface_handler () const
 
const LateralAveraging< dim > & get_lateral_averaging () const
 
const ConstraintMatrix & get_current_constraints () const
 
bool simulator_is_initialized () const
 
double get_pressure_scaling () const
 
bool pressure_rhs_needs_compatibility_modification () const
 
bool model_has_prescribed_stokes_solution () const
 
TableHandlerget_statistics_object () const
 
template<typename PostprocessorType >
DEAL_II_DEPRECATED PostprocessorType * find_postprocessor () const
 
const Postprocess::Manager< dim > & get_postprocess_manager () const
 
- Public Member Functions inherited from aspect::MaterialModel::MeltFractionModel< dim >
virtual ~MeltFractionModel ()
 

Private Member Functions

virtual double melt_fraction (const double temperature, const double pressure, const std::vector< double > &compositional_fields, const Point< dim > &position) const
 
virtual double peridotite_melt_fraction (const double temperature, const double pressure, const std::vector< double > &compositional_fields, const Point< dim > &position) const
 
virtual double pyroxenite_melt_fraction (const double temperature, const double pressure, const std::vector< double > &compositional_fields, const Point< dim > &position) const
 
double entropy_derivative (const double temperature, const double pressure, const std::vector< double > &compositional_fields, const Point< dim > &position, const NonlinearDependence::Dependence dependence) const
 

Private Attributes

double reference_rho
 
double reference_T
 
double eta
 
double composition_viscosity_prefactor
 
double thermal_viscosity_exponent
 
double thermal_alpha
 
double melt_thermal_alpha
 
double reference_specific_heat
 
double reference_compressibility
 
double k_value
 
double compositional_delta_rho
 
double A1
 
double A2
 
double A3
 
double B1
 
double B2
 
double B3
 
double C1
 
double C2
 
double C3
 
double r1
 
double r2
 
double M_cpx
 
double beta
 
double peridotite_melting_entropy_change
 
double D1
 
double D2
 
double D3
 
double E1
 
double E2
 
double F_px_max
 
double relative_melt_density
 
double pyroxenite_melting_entropy_change
 

Functions used in dealing with run-time parameters

virtual void parse_parameters (ParameterHandler &prm)
 
static void declare_parameters (ParameterHandler &prm)
 

Additional Inherited Members

- Public Types inherited from aspect::MaterialModel::Interface< dim >
typedef MaterialModel::MaterialModelInputs< dim > MaterialModelInputs
 
typedef MaterialModel::MaterialModelOutputs< dim > MaterialModelOutputs
 
- Static Public Member Functions inherited from aspect::MaterialModel::Interface< dim >
static void declare_parameters (ParameterHandler &prm)
 
- Static Public Member Functions inherited from aspect::SimulatorAccess< dim >
static void get_composition_values_at_q_point (const std::vector< std::vector< double > > &composition_values, const unsigned int q, std::vector< double > &composition_values_at_q_point)
 
- Protected Attributes inherited from aspect::MaterialModel::Interface< dim >
NonlinearDependence::ModelDependence model_dependence
 

Detailed Description

template<int dim>
class aspect::MaterialModel::LatentHeatMelt< dim >

A material model that implements latent heat of melting for two materials: peridotite and pyroxenite. The density and thermal expansivity depend on the melt fraction.

Definition at line 42 of file latent_heat_melt.h.

Member Function Documentation

§ evaluate()

template<int dim>
virtual void aspect::MaterialModel::LatentHeatMelt< dim >::evaluate ( const MaterialModel::MaterialModelInputs< dim > &  in,
MaterialModel::MaterialModelOutputs< dim > &  out 
) const
virtual

Function to compute the material properties in out given the inputs in in. If MaterialModelInputs.strain_rate has the length 0, then the viscosity does not need to be computed.

Implements aspect::MaterialModel::Interface< dim >.

§ is_compressible()

template<int dim>
virtual bool aspect::MaterialModel::LatentHeatMelt< dim >::is_compressible ( ) const
virtual

Return whether the model is compressible or not. Incompressibility does not necessarily imply that the density is constant; rather, it may still depend on temperature or pressure. In the current context, compressibility means whether we should solve the continuity equation as $\nabla \cdot (\rho \mathbf u)=0$ (compressible Stokes) or as $\nabla \cdot \mathbf{u}=0$ (incompressible Stokes).

Implements aspect::MaterialModel::Interface< dim >.

§ reference_viscosity()

template<int dim>
virtual double aspect::MaterialModel::LatentHeatMelt< dim >::reference_viscosity ( ) const
virtual

Return a reference value typical of the viscosities that appear in this model. This value is not actually used in the material description itself, but is used in scaling variables to the same numerical order of magnitude when solving linear systems. Specifically, the reference viscosity appears in the factor scaling the pressure against the velocity. It is also used in computing dimension-less quantities. You may want to take a look at the Kronbichler, Heister, Bangerth 2012 paper that describes the design of ASPECT for a description of this pressure scaling.

Note
The reference viscosity should take into account the complete constitutive relationship, defined as the scalar viscosity times the constitutive tensor. In most cases, the constitutive tensor will simply be the identity tensor (this is the default case), but this may become important for material models with anisotropic viscosities, if the constitutive tensor is not normalized.

Implements aspect::MaterialModel::Interface< dim >.

§ melt_fractions()

template<int dim>
virtual void aspect::MaterialModel::LatentHeatMelt< dim >::melt_fractions ( const MaterialModel::MaterialModelInputs< dim > &  in,
std::vector< double > &  melt_fractions 
) const
virtual

Compute the equilibrium melt fractions for the given input conditions. in and melt_fractions need to have the same size.

Parameters
inObject that contains the current conditions.
melt_fractionsVector of doubles that is filled with the equilibrium melt fraction for each given input conditions.

Implements aspect::MaterialModel::MeltFractionModel< dim >.

§ declare_parameters()

template<int dim>
static void aspect::MaterialModel::LatentHeatMelt< dim >::declare_parameters ( ParameterHandler prm)
static

Declare the parameters this class takes through input files.

§ parse_parameters()

template<int dim>
virtual void aspect::MaterialModel::LatentHeatMelt< dim >::parse_parameters ( ParameterHandler prm)
virtual

Read the parameters this class declares from the parameter file.

Reimplemented from aspect::MaterialModel::Interface< dim >.

§ melt_fraction()

template<int dim>
virtual double aspect::MaterialModel::LatentHeatMelt< dim >::melt_fraction ( const double  temperature,
const double  pressure,
const std::vector< double > &  compositional_fields,
const Point< dim > &  position 
) const
privatevirtual

Percentage of material that is molten. Melting model after Katz, 2003 (for peridotite) and Sobolev et al., 2011 (for pyroxenite)

§ peridotite_melt_fraction()

template<int dim>
virtual double aspect::MaterialModel::LatentHeatMelt< dim >::peridotite_melt_fraction ( const double  temperature,
const double  pressure,
const std::vector< double > &  compositional_fields,
const Point< dim > &  position 
) const
privatevirtual

§ pyroxenite_melt_fraction()

template<int dim>
virtual double aspect::MaterialModel::LatentHeatMelt< dim >::pyroxenite_melt_fraction ( const double  temperature,
const double  pressure,
const std::vector< double > &  compositional_fields,
const Point< dim > &  position 
) const
privatevirtual

§ entropy_derivative()

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::entropy_derivative ( const double  temperature,
const double  pressure,
const std::vector< double > &  compositional_fields,
const Point< dim > &  position,
const NonlinearDependence::Dependence  dependence 
) const
private

Member Data Documentation

§ reference_rho

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::reference_rho
private

Definition at line 111 of file latent_heat_melt.h.

§ reference_T

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::reference_T
private

Definition at line 112 of file latent_heat_melt.h.

§ eta

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::eta
private

Definition at line 113 of file latent_heat_melt.h.

§ composition_viscosity_prefactor

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::composition_viscosity_prefactor
private

Definition at line 114 of file latent_heat_melt.h.

§ thermal_viscosity_exponent

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::thermal_viscosity_exponent
private

Definition at line 115 of file latent_heat_melt.h.

§ thermal_alpha

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::thermal_alpha
private

Definition at line 116 of file latent_heat_melt.h.

§ melt_thermal_alpha

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::melt_thermal_alpha
private

Definition at line 117 of file latent_heat_melt.h.

§ reference_specific_heat

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::reference_specific_heat
private

Definition at line 118 of file latent_heat_melt.h.

§ reference_compressibility

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::reference_compressibility
private

Definition at line 119 of file latent_heat_melt.h.

§ k_value

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::k_value
private

The thermal conductivity.

Definition at line 124 of file latent_heat_melt.h.

§ compositional_delta_rho

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::compositional_delta_rho
private

Definition at line 126 of file latent_heat_melt.h.

§ A1

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::A1
private

Parameters for anhydrous melting of peridotite after Katz, 2003

Definition at line 133 of file latent_heat_melt.h.

§ A2

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::A2
private

Definition at line 134 of file latent_heat_melt.h.

§ A3

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::A3
private

Definition at line 135 of file latent_heat_melt.h.

§ B1

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::B1
private

Definition at line 138 of file latent_heat_melt.h.

§ B2

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::B2
private

Definition at line 139 of file latent_heat_melt.h.

§ B3

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::B3
private

Definition at line 140 of file latent_heat_melt.h.

§ C1

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::C1
private

Definition at line 143 of file latent_heat_melt.h.

§ C2

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::C2
private

Definition at line 144 of file latent_heat_melt.h.

§ C3

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::C3
private

Definition at line 145 of file latent_heat_melt.h.

§ r1

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::r1
private

Definition at line 148 of file latent_heat_melt.h.

§ r2

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::r2
private

Definition at line 149 of file latent_heat_melt.h.

§ M_cpx

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::M_cpx
private

Definition at line 150 of file latent_heat_melt.h.

§ beta

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::beta
private

Definition at line 153 of file latent_heat_melt.h.

§ peridotite_melting_entropy_change

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::peridotite_melting_entropy_change
private

Definition at line 156 of file latent_heat_melt.h.

§ D1

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::D1
private

Parameters for melting of pyroxenite after Sobolev et al., 2011

Definition at line 163 of file latent_heat_melt.h.

§ D2

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::D2
private

Definition at line 164 of file latent_heat_melt.h.

§ D3

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::D3
private

Definition at line 165 of file latent_heat_melt.h.

§ E1

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::E1
private

Definition at line 167 of file latent_heat_melt.h.

§ E2

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::E2
private

Definition at line 168 of file latent_heat_melt.h.

§ F_px_max

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::F_px_max
private

Definition at line 171 of file latent_heat_melt.h.

§ relative_melt_density

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::relative_melt_density
private

Definition at line 174 of file latent_heat_melt.h.

§ pyroxenite_melting_entropy_change

template<int dim>
double aspect::MaterialModel::LatentHeatMelt< dim >::pyroxenite_melting_entropy_change
private

Definition at line 176 of file latent_heat_melt.h.


The documentation for this class was generated from the following file: