ASPECT
Public Member Functions | Static Public Member Functions | Private Attributes | List of all members
aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim > Class Template Reference
Inheritance diagram for aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >:
Inheritance graph
[legend]

Public Member Functions

void evaluate (const MaterialModel::MaterialModelInputs< dim > &in, const unsigned int input_index, MaterialModel::EquationOfStateOutputs< dim > &out) const
 
bool is_compressible () const
 
void parse_parameters (ParameterHandler &prm, const std::shared_ptr< std::vector< unsigned int >> &expected_n_phases_per_composition=std::shared_ptr< std::vector< unsigned int >>())
 
- Public Member Functions inherited from aspect::SimulatorAccess< dim >
 SimulatorAccess ()
 
 SimulatorAccess (const Simulator< dim > &simulator_object)
 
virtual ~SimulatorAccess ()
 
virtual void initialize_simulator (const Simulator< dim > &simulator_object)
 
template<typename PostprocessorType >
PostprocessorType * find_postprocessor () const
 
const Introspection< dim > & introspection () const
 
const Simulator< dim > & get_simulator () const
 
const Parameters< dim > & get_parameters () const
 
SimulatorSignals< dim > & get_signals () const
 
MPI_Comm get_mpi_communicator () const
 
TimerOutputget_computing_timer () const
 
const ConditionalOStreamget_pcout () const
 
double get_time () const
 
double get_timestep () const
 
double get_old_timestep () const
 
unsigned int get_timestep_number () const
 
unsigned int get_nonlinear_iteration () const
 
const parallel::distributed::Triangulation< dim > & get_triangulation () const
 
double get_volume () const
 
const Mapping< dim > & get_mapping () const
 
std::string get_output_directory () const
 
bool include_adiabatic_heating () const
 
bool include_latent_heat () const
 
bool include_melt_transport () const
 
int get_stokes_velocity_degree () const
 
double get_adiabatic_surface_temperature () const
 
double get_surface_pressure () const
 
bool convert_output_to_years () const
 
unsigned int get_pre_refinement_step () const
 
unsigned int n_compositional_fields () const
 
void get_refinement_criteria (Vector< float > &estimated_error_per_cell) const
 
void get_artificial_viscosity (Vector< float > &viscosity_per_cell, const bool skip_interior_cells=false) const
 
void get_artificial_viscosity_composition (Vector< float > &viscosity_per_cell, const unsigned int compositional_variable) const
 
const LinearAlgebra::BlockVectorget_current_linearization_point () const
 
const LinearAlgebra::BlockVectorget_solution () const
 
const LinearAlgebra::BlockVectorget_old_solution () const
 
const LinearAlgebra::BlockVectorget_old_old_solution () const
 
const LinearAlgebra::BlockVectorget_reaction_vector () const
 
const LinearAlgebra::BlockVectorget_mesh_velocity () const
 
const DoFHandler< dim > & get_dof_handler () const
 
const FiniteElement< dim > & get_fe () const
 
const LinearAlgebra::BlockSparseMatrixget_system_matrix () const
 
const LinearAlgebra::BlockSparseMatrixget_system_preconditioner_matrix () const
 
const MaterialModel::Interface< dim > & get_material_model () const
 
void compute_material_model_input_values (const LinearAlgebra::BlockVector &input_solution, const FEValuesBase< dim, dim > &input_finite_element_values, const typename DoFHandler< dim >::active_cell_iterator &cell, const bool compute_strainrate, MaterialModel::MaterialModelInputs< dim > &material_model_inputs) const
 
const GravityModel::Interface< dim > & get_gravity_model () const
 
const InitialTopographyModel::Interface< dim > & get_initial_topography_model () const
 
const GeometryModel::Interface< dim > & get_geometry_model () const
 
const AdiabaticConditions::Interface< dim > & get_adiabatic_conditions () const
 
bool has_boundary_temperature () const
 
DEAL_II_DEPRECATED const BoundaryTemperature::Interface< dim > & get_boundary_temperature () const
 
const BoundaryTemperature::Manager< dim > & get_boundary_temperature_manager () const
 
const BoundaryHeatFlux::Interface< dim > & get_boundary_heat_flux () const
 
bool has_boundary_composition () const
 
DEAL_II_DEPRECATED const BoundaryComposition::Interface< dim > & get_boundary_composition () const
 
const BoundaryComposition::Manager< dim > & get_boundary_composition_manager () const
 
const std::map< types::boundary_id, std::unique_ptr< BoundaryTraction::Interface< dim > > > & get_boundary_traction () const
 
DEAL_II_DEPRECATED const InitialTemperature::Interface< dim > & get_initial_temperature () const
 
const InitialTemperature::Manager< dim > & get_initial_temperature_manager () const
 
DEAL_II_DEPRECATED const InitialComposition::Interface< dim > & get_initial_composition () const
 
const InitialComposition::Manager< dim > & get_initial_composition_manager () const
 
const std::set< types::boundary_id > & get_fixed_temperature_boundary_indicators () const
 
const std::set< types::boundary_id > & get_fixed_heat_flux_boundary_indicators () const
 
const std::set< types::boundary_id > & get_fixed_composition_boundary_indicators () const
 
const std::set< types::boundary_id > & get_mesh_deformation_boundary_indicators () const
 
const BoundaryVelocity::Manager< dim > & get_boundary_velocity_manager () const
 
const HeatingModel::Manager< dim > & get_heating_model_manager () const
 
const MeshRefinement::Manager< dim > & get_mesh_refinement_manager () const
 
const MeltHandler< dim > & get_melt_handler () const
 
const VolumeOfFluidHandler< dim > & get_volume_of_fluid_handler () const
 
const NewtonHandler< dim > & get_newton_handler () const
 
const MeshDeformation::MeshDeformationHandler< dim > & get_mesh_deformation_handler () const
 
const LateralAveraging< dim > & get_lateral_averaging () const
 
const AffineConstraints< double > & get_current_constraints () const
 
bool simulator_is_past_initialization () const
 
double get_pressure_scaling () const
 
bool pressure_rhs_needs_compatibility_modification () const
 
bool model_has_prescribed_stokes_solution () const
 
TableHandlerget_statistics_object () const
 
template<typename PostprocessorType >
DEAL_II_DEPRECATED PostprocessorType * find_postprocessor () const
 
const Postprocess::Manager< dim > & get_postprocess_manager () const
 
const Particle::World< dim > & get_particle_world () const
 
Particle::World< dim > & get_particle_world ()
 
bool is_stokes_matrix_free ()
 
const StokesMatrixFreeHandler< dim > & get_stokes_matrix_free () const
 
RotationProperties< dim > compute_net_angular_momentum (const bool use_constant_density, const LinearAlgebra::BlockVector &solution, const bool limit_to_top_faces=false) const
 

Static Public Member Functions

static void declare_parameters (ParameterHandler &prm, const double default_thermal_expansion=3.5e-5)
 
- Static Public Member Functions inherited from aspect::SimulatorAccess< dim >
static void get_composition_values_at_q_point (const std::vector< std::vector< double > > &composition_values, const unsigned int q, std::vector< double > &composition_values_at_q_point)
 

Private Attributes

std::vector< double > densities
 
double reference_T
 
std::vector< double > thermal_expansivities
 
std::vector< double > specific_heats
 
std::shared_ptr< std::vector< unsigned int > > n_phases_per_composition
 

Detailed Description

template<int dim>
class aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >

An incompressible equation of state that is intended for use with multiple compositional fields and potentially phases. For each material property, the user supplies a comma delimited list of length N+P+1, where N is the number of compositional fields used in the computation, P is the total number of phase transitions. The first entry corresponds to the "background" (which is also why there are N+P+1 entries).

If a single value is given, then all the compositional fields and phases are given that value. Other lengths of lists are not allowed. For a given compositional field and phase the material parameters are treated as constant, except density, which varies linearly with temperature according to the equation:

\(\rho(p,T,\mathfrak c) = \left(1-\alpha_i (T-T_0)\right) \rho_0(\mathfrak c_i).\)

There is no pressure-dependence of the density.

Definition at line 54 of file multicomponent_incompressible.h.

Member Function Documentation

§ evaluate()

template<int dim>
void aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::evaluate ( const MaterialModel::MaterialModelInputs< dim > &  in,
const unsigned int  input_index,
MaterialModel::EquationOfStateOutputs< dim > &  out 
) const

A function that computes the output of the equation of state out for all compositions and phases, given the inputs in in and an index input_index that determines which entry of the vector of inputs is used.

§ is_compressible()

template<int dim>
bool aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::is_compressible ( ) const

Return whether the model is compressible or not. Incompressibility does not necessarily imply that the density is constant; rather, it may still depend on temperature or pressure. In the current context, compressibility means whether we should solve the continuity equation as \(\nabla \cdot (\rho \mathbf u)=0\) (compressible Stokes) or as \(\nabla \cdot \mathbf{u}=0\) (incompressible Stokes).

§ declare_parameters()

template<int dim>
static void aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::declare_parameters ( ParameterHandler prm,
const double  default_thermal_expansion = 3.5e-5 
)
static

Declare the parameters this class takes through input files. The optional parameter default_thermal_expansion determines the default value of the thermal expansivity used in the equation of state.

§ parse_parameters()

template<int dim>
void aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::parse_parameters ( ParameterHandler prm,
const std::shared_ptr< std::vector< unsigned int >> &  expected_n_phases_per_composition = std::shared_ptr< std::vector< unsigned int >>() 
)

Read the parameters this class declares from the parameter file. If expected_n_phases_per_composition points to a vector of unsigned integers this is considered the number of phase transitions for each compositional field and will be checked against the parsed parameters.

Member Data Documentation

§ densities

template<int dim>
std::vector<double> aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::densities
private

Vector of reference densities \(\rho_0\) with one entry per composition and phase plus one for the background field.

Definition at line 104 of file multicomponent_incompressible.h.

§ reference_T

template<int dim>
double aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::reference_T
private

The reference temperature \(T_0\) used in the computation of the density. All components use the same reference temperature.

Definition at line 110 of file multicomponent_incompressible.h.

§ thermal_expansivities

template<int dim>
std::vector<double> aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::thermal_expansivities
private

Vector of thermal expansivities with one entry per composition and phase plus one for the background field.

Definition at line 116 of file multicomponent_incompressible.h.

§ specific_heats

template<int dim>
std::vector<double> aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::specific_heats
private

Vector of specific heat capacities with one entry per composition and phase plus one for the background field.

Definition at line 122 of file multicomponent_incompressible.h.

§ n_phases_per_composition

template<int dim>
std::shared_ptr<std::vector<unsigned int> > aspect::MaterialModel::EquationOfState::MulticomponentIncompressible< dim >::n_phases_per_composition
private

A vector that stores how many separate phases there are per compositional field. In other words if there is a background field without phase transitions and one more composition that has 2 phase transitions this vector would store {1,3}.

Definition at line 129 of file multicomponent_incompressible.h.


The documentation for this class was generated from the following file: