Public Member Functions | List of all members
aspect::Assemblers::DarcySystem< dim > Class Template Reference
Inheritance diagram for aspect::Assemblers::DarcySystem< dim >:
Inheritance graph

Public Member Functions

void execute (internal::Assembly::Scratch::ScratchBase< dim > &scratch_base, internal::Assembly::CopyData::CopyDataBase< dim > &data_base) const override
std::vector< double > compute_residual (internal::Assembly::Scratch::ScratchBase< dim > &scratch_base) const override
void create_additional_material_model_outputs (MaterialModel::MaterialModelOutputs< dim > &outputs) const override
- Public Member Functions inherited from aspect::Assemblers::Interface< dim >
virtual ~Interface ()=default
- Public Member Functions inherited from aspect::Assemblers::AdvectionStabilizationInterface< dim >
virtual ~AdvectionStabilizationInterface ()
virtual std::vector< double > advection_prefactors (internal::Assembly::Scratch::ScratchBase< dim > &scratch_base) const
virtual std::vector< double > diffusion_prefactors (internal::Assembly::Scratch::ScratchBase< dim > &scratch_base) const
- Public Member Functions inherited from aspect::SimulatorAccess< dim >
 SimulatorAccess ()
 SimulatorAccess (const Simulator< dim > &simulator_object)
virtual ~SimulatorAccess ()=default
virtual void initialize_simulator (const Simulator< dim > &simulator_object)
const Introspection< dim > & introspection () const
const Simulator< dim > & get_simulator () const
const Parameters< dim > & get_parameters () const
SimulatorSignals< dim > & get_signals () const
MPI_Comm get_mpi_communicator () const
TimerOutput & get_computing_timer () const
const ConditionalOStream & get_pcout () const
double get_time () const
double get_timestep () const
double get_old_timestep () const
unsigned int get_timestep_number () const
const TimeStepping::Manager< dim > & get_timestepping_manager () const
unsigned int get_nonlinear_iteration () const
const parallel::distributed::Triangulation< dim > & get_triangulation () const
double get_volume () const
const Mapping< dim > & get_mapping () const
std::string get_output_directory () const
bool include_adiabatic_heating () const
bool include_latent_heat () const
bool include_melt_transport () const
int get_stokes_velocity_degree () const
double get_adiabatic_surface_temperature () const
double get_surface_pressure () const
bool convert_output_to_years () const
unsigned int get_pre_refinement_step () const
unsigned int n_compositional_fields () const
double get_end_time () const
void get_refinement_criteria (Vector< float > &estimated_error_per_cell) const
void get_artificial_viscosity (Vector< float > &viscosity_per_cell, const bool skip_interior_cells=false) const
void get_artificial_viscosity_composition (Vector< float > &viscosity_per_cell, const unsigned int compositional_variable) const
const LinearAlgebra::BlockVectorget_current_linearization_point () const
const LinearAlgebra::BlockVectorget_solution () const
const LinearAlgebra::BlockVectorget_old_solution () const
const LinearAlgebra::BlockVectorget_old_old_solution () const
const LinearAlgebra::BlockVectorget_reaction_vector () const
const LinearAlgebra::BlockVectorget_mesh_velocity () const
const DoFHandler< dim > & get_dof_handler () const
const FiniteElement< dim > & get_fe () const
const LinearAlgebra::BlockSparseMatrixget_system_matrix () const
const LinearAlgebra::BlockSparseMatrixget_system_preconditioner_matrix () const
const MaterialModel::Interface< dim > & get_material_model () const
const GravityModel::Interface< dim > & get_gravity_model () const
const InitialTopographyModel::Interface< dim > & get_initial_topography_model () const
const GeometryModel::Interface< dim > & get_geometry_model () const
const AdiabaticConditions::Interface< dim > & get_adiabatic_conditions () const
bool has_boundary_temperature () const
const BoundaryTemperature::Manager< dim > & get_boundary_temperature_manager () const
const BoundaryHeatFlux::Interface< dim > & get_boundary_heat_flux () const
bool has_boundary_composition () const
const BoundaryComposition::Manager< dim > & get_boundary_composition_manager () const
const BoundaryTraction::Manager< dim > & get_boundary_traction_manager () const
std::shared_ptr< const InitialTemperature::Manager< dim > > get_initial_temperature_manager_pointer () const
const InitialTemperature::Manager< dim > & get_initial_temperature_manager () const
std::shared_ptr< const InitialComposition::Manager< dim > > get_initial_composition_manager_pointer () const
const InitialComposition::Manager< dim > & get_initial_composition_manager () const
const std::set< types::boundary_id > & get_fixed_temperature_boundary_indicators () const
const std::set< types::boundary_id > & get_fixed_heat_flux_boundary_indicators () const
const std::set< types::boundary_id > & get_fixed_composition_boundary_indicators () const
const std::set< types::boundary_id > & get_mesh_deformation_boundary_indicators () const
const BoundaryVelocity::Manager< dim > & get_boundary_velocity_manager () const
const HeatingModel::Manager< dim > & get_heating_model_manager () const
const MeshRefinement::Manager< dim > & get_mesh_refinement_manager () const
const MeltHandler< dim > & get_melt_handler () const
const VolumeOfFluidHandler< dim > & get_volume_of_fluid_handler () const
const NewtonHandler< dim > & get_newton_handler () const
const MeshDeformation::MeshDeformationHandler< dim > & get_mesh_deformation_handler () const
const LateralAveraging< dim > & get_lateral_averaging () const
const AffineConstraints< double > & get_current_constraints () const
bool simulator_is_past_initialization () const
double get_pressure_scaling () const
bool pressure_rhs_needs_compatibility_modification () const
bool model_has_prescribed_stokes_solution () const
TableHandler & get_statistics_object () const
const Postprocess::Manager< dim > & get_postprocess_manager () const
const Particle::World< dim > & get_particle_world () const
Particle::World< dim > & get_particle_world ()
bool is_stokes_matrix_free ()
const StokesMatrixFreeHandler< dim > & get_stokes_matrix_free () const
RotationProperties< dim > compute_net_angular_momentum (const bool use_constant_density, const LinearAlgebra::BlockVector &solution, const bool limit_to_top_faces=false) const

Additional Inherited Members

- Static Public Member Functions inherited from aspect::SimulatorAccess< dim >
static void get_composition_values_at_q_point (const std::vector< std::vector< double >> &composition_values, const unsigned int q, std::vector< double > &composition_values_at_q_point)

Detailed Description

template<int dim>
class aspect::Assemblers::DarcySystem< dim >

Definition at line 50 of file advection.h.

Member Function Documentation

§ execute()

template<int dim>
void aspect::Assemblers::DarcySystem< dim >::execute ( internal::Assembly::Scratch::ScratchBase< dim > &  scratch,
internal::Assembly::CopyData::CopyDataBase< dim > &  data 
) const

Execute this assembler object. This function performs the primary work of an assembler. More precisely, it uses information for the current cell that is stored in scratch (like the material properties on this cell and the position of quadrature points) and computes the matrix and right hand side contributions for a set of terms for the given cell. These contributions are stored in data. Note, that the data in scratch and data is shared between all active assemblers so that each assembler should only add contributions to data, not overwrite entries in the matrix. After all assemblers have finished, the final content of data is distributed into the global matrix and right hand side vector.

Implements aspect::Assemblers::Interface< dim >.

§ compute_residual()

template<int dim>
std::vector<double> aspect::Assemblers::DarcySystem< dim >::compute_residual ( internal::Assembly::Scratch::ScratchBase< dim > &  ) const

A required function for objects that implement the assembly of terms in an equation that requires the computation of residuals (in particular the advection equation in ASPECT). Just like the assemblers itself, the residual that we use to compute the necessary entropy viscosity depend on the equation (i.e. which terms are actually included in the equation). Thus different objects compute different residuals (i.e. the residual for a melt advection equation looks different from the residual for a passive compositional field). For assemblers for the Stokes system, an implementation of this function is not necessary.

Reimplemented from aspect::Assemblers::Interface< dim >.

§ create_additional_material_model_outputs()

template<int dim>
void aspect::Assemblers::DarcySystem< dim >::create_additional_material_model_outputs ( MaterialModel::MaterialModelOutputs< dim > &  ) const

This function gets called if a MaterialModelOutputs is created and allows the assembler to attach AdditionalOutputs. The function might be called more than once for a MaterialModelOutput, so it is recommended to check if get_additional_output() returns an instance before adding a new one to the additional_outputs vector. By default this function does not create additional outputs.

Material models, through functions derived from MaterialModel::Interface::evaluate(), put their computed material parameters into a structure of type MaterialModel::MaterialModelOutputs. By default, material models will compute those parameters that correspond to the member variables of that structure. However, there are situations where parts of the simulator need additional pieces of information; a typical example would be the use of a Newton scheme that also requires the computation of derivatives of material parameters with respect to pressure, temperature, and possibly other variables.

The computation of such additional information is controlled by the presence of a collection of pointers in MaterialModel::MaterialModelOutputs that point to additional objects. Whether or not one needs these additional objects depends on what assemblers are selected, or what postprocessing one wants to compute. For the purpose of assembly, the current function creates the additional objects (such as the one that stores derivatives) and adds pointers to them to the collection, based on what this assembler class requires. This function is always called before the material model is evaluated and execute() is called. This ensures the additional material model output is available when execute() is called.

Reimplemented from aspect::Assemblers::Interface< dim >.

The documentation for this class was generated from the following file: