ASPECT
Public Member Functions | List of all members
aspect::Assemblers::DarcySystem< dim > Class Template Reference
Inheritance diagram for aspect::Assemblers::DarcySystem< dim >:
Inheritance graph
[legend]

Public Member Functions

void execute (internal::Assembly::Scratch::ScratchBase< dim > &scratch_base, internal::Assembly::CopyData::CopyDataBase< dim > &data_base) const override
 
std::vector< double > compute_residual (internal::Assembly::Scratch::ScratchBase< dim > &scratch_base) const override
 
void create_additional_material_model_outputs (MaterialModel::MaterialModelOutputs< dim > &outputs) const override
 
- Public Member Functions inherited from aspect::Assemblers::Interface< dim >
virtual ~Interface ()=default
 
- Public Member Functions inherited from aspect::Assemblers::AdvectionStabilizationInterface< dim >
virtual ~AdvectionStabilizationInterface ()
 
virtual std::vector< double > advection_prefactors (internal::Assembly::Scratch::ScratchBase< dim > &scratch_base) const
 
virtual std::vector< double > diffusion_prefactors (internal::Assembly::Scratch::ScratchBase< dim > &scratch_base) const
 
- Public Member Functions inherited from aspect::SimulatorAccess< dim >
 SimulatorAccess ()
 
 SimulatorAccess (const Simulator< dim > &simulator_object)
 
virtual ~SimulatorAccess ()=default
 
virtual void initialize_simulator (const Simulator< dim > &simulator_object)
 
const Introspection< dim > & introspection () const
 
const Simulator< dim > & get_simulator () const
 
const Parameters< dim > & get_parameters () const
 
SimulatorSignals< dim > & get_signals () const
 
MPI_Comm get_mpi_communicator () const
 
TimerOutput & get_computing_timer () const
 
const ConditionalOStream & get_pcout () const
 
double get_time () const
 
double get_timestep () const
 
double get_old_timestep () const
 
unsigned int get_timestep_number () const
 
const TimeStepping::Manager< dim > & get_timestepping_manager () const
 
unsigned int get_nonlinear_iteration () const
 
const parallel::distributed::Triangulation< dim > & get_triangulation () const
 
double get_volume () const
 
const Mapping< dim > & get_mapping () const
 
std::string get_output_directory () const
 
bool include_adiabatic_heating () const
 
bool include_latent_heat () const
 
bool include_melt_transport () const
 
int get_stokes_velocity_degree () const
 
double get_adiabatic_surface_temperature () const
 
double get_surface_pressure () const
 
bool convert_output_to_years () const
 
unsigned int get_pre_refinement_step () const
 
unsigned int n_compositional_fields () const
 
double get_end_time () const
 
void get_refinement_criteria (Vector< float > &estimated_error_per_cell) const
 
void get_artificial_viscosity (Vector< float > &viscosity_per_cell, const bool skip_interior_cells=false) const
 
void get_artificial_viscosity_composition (Vector< float > &viscosity_per_cell, const unsigned int compositional_variable) const
 
const LinearAlgebra::BlockVectorget_current_linearization_point () const
 
const LinearAlgebra::BlockVectorget_solution () const
 
const LinearAlgebra::BlockVectorget_old_solution () const
 
const LinearAlgebra::BlockVectorget_old_old_solution () const
 
const LinearAlgebra::BlockVectorget_reaction_vector () const
 
const LinearAlgebra::BlockVectorget_mesh_velocity () const
 
const DoFHandler< dim > & get_dof_handler () const
 
const FiniteElement< dim > & get_fe () const
 
const LinearAlgebra::BlockSparseMatrixget_system_matrix () const
 
const LinearAlgebra::BlockSparseMatrixget_system_preconditioner_matrix () const
 
const MaterialModel::Interface< dim > & get_material_model () const
 
const GravityModel::Interface< dim > & get_gravity_model () const
 
const InitialTopographyModel::Interface< dim > & get_initial_topography_model () const
 
const GeometryModel::Interface< dim > & get_geometry_model () const
 
const AdiabaticConditions::Interface< dim > & get_adiabatic_conditions () const
 
bool has_boundary_temperature () const
 
const BoundaryTemperature::Manager< dim > & get_boundary_temperature_manager () const
 
const BoundaryHeatFlux::Interface< dim > & get_boundary_heat_flux () const
 
bool has_boundary_composition () const
 
const BoundaryComposition::Manager< dim > & get_boundary_composition_manager () const
 
const BoundaryTraction::Manager< dim > & get_boundary_traction_manager () const
 
std::shared_ptr< const InitialTemperature::Manager< dim > > get_initial_temperature_manager_pointer () const
 
const InitialTemperature::Manager< dim > & get_initial_temperature_manager () const
 
std::shared_ptr< const InitialComposition::Manager< dim > > get_initial_composition_manager_pointer () const
 
const InitialComposition::Manager< dim > & get_initial_composition_manager () const
 
const std::set< types::boundary_id > & get_fixed_temperature_boundary_indicators () const
 
const std::set< types::boundary_id > & get_fixed_heat_flux_boundary_indicators () const
 
const std::set< types::boundary_id > & get_fixed_composition_boundary_indicators () const
 
const std::set< types::boundary_id > & get_mesh_deformation_boundary_indicators () const
 
const BoundaryVelocity::Manager< dim > & get_boundary_velocity_manager () const
 
const HeatingModel::Manager< dim > & get_heating_model_manager () const
 
const MeshRefinement::Manager< dim > & get_mesh_refinement_manager () const
 
const MeltHandler< dim > & get_melt_handler () const
 
const VolumeOfFluidHandler< dim > & get_volume_of_fluid_handler () const
 
const NewtonHandler< dim > & get_newton_handler () const
 
const MeshDeformation::MeshDeformationHandler< dim > & get_mesh_deformation_handler () const
 
const LateralAveraging< dim > & get_lateral_averaging () const
 
const AffineConstraints< double > & get_current_constraints () const
 
bool simulator_is_past_initialization () const
 
double get_pressure_scaling () const
 
bool pressure_rhs_needs_compatibility_modification () const
 
bool model_has_prescribed_stokes_solution () const
 
TableHandler & get_statistics_object () const
 
const Postprocess::Manager< dim > & get_postprocess_manager () const
 
const Particle::World< dim > & get_particle_world () const
 
Particle::World< dim > & get_particle_world ()
 
bool is_stokes_matrix_free ()
 
const StokesMatrixFreeHandler< dim > & get_stokes_matrix_free () const
 
RotationProperties< dim > compute_net_angular_momentum (const bool use_constant_density, const LinearAlgebra::BlockVector &solution, const bool limit_to_top_faces=false) const
 

Additional Inherited Members

- Static Public Member Functions inherited from aspect::SimulatorAccess< dim >
static void get_composition_values_at_q_point (const std::vector< std::vector< double >> &composition_values, const unsigned int q, std::vector< double > &composition_values_at_q_point)
 

Detailed Description

template<int dim>
class aspect::Assemblers::DarcySystem< dim >

Definition at line 50 of file advection.h.

Member Function Documentation

§ execute()

template<int dim>
void aspect::Assemblers::DarcySystem< dim >::execute ( internal::Assembly::Scratch::ScratchBase< dim > &  scratch,
internal::Assembly::CopyData::CopyDataBase< dim > &  data 
) const
overridevirtual

Execute this assembler object. This function performs the primary work of an assembler. More precisely, it uses information for the current cell that is stored in scratch (like the material properties on this cell and the position of quadrature points) and computes the matrix and right hand side contributions for a set of terms for the given cell. These contributions are stored in data. Note, that the data in scratch and data is shared between all active assemblers so that each assembler should only add contributions to data, not overwrite entries in the matrix. After all assemblers have finished, the final content of data is distributed into the global matrix and right hand side vector.

Implements aspect::Assemblers::Interface< dim >.

§ compute_residual()

template<int dim>
std::vector<double> aspect::Assemblers::DarcySystem< dim >::compute_residual ( internal::Assembly::Scratch::ScratchBase< dim > &  ) const
overridevirtual

A required function for objects that implement the assembly of terms in an equation that requires the computation of residuals (in particular the advection equation in ASPECT). Just like the assemblers itself, the residual that we use to compute the necessary entropy viscosity depend on the equation (i.e. which terms are actually included in the equation). Thus different objects compute different residuals (i.e. the residual for a melt advection equation looks different from the residual for a passive compositional field). For assemblers for the Stokes system, an implementation of this function is not necessary.

Reimplemented from aspect::Assemblers::Interface< dim >.

§ create_additional_material_model_outputs()

template<int dim>
void aspect::Assemblers::DarcySystem< dim >::create_additional_material_model_outputs ( MaterialModel::MaterialModelOutputs< dim > &  ) const
overridevirtual

This function gets called if a MaterialModelOutputs is created and allows the assembler to attach AdditionalOutputs. The function might be called more than once for a MaterialModelOutput, so it is recommended to check if get_additional_output() returns an instance before adding a new one to the additional_outputs vector. By default this function does not create additional outputs.

Material models, through functions derived from MaterialModel::Interface::evaluate(), put their computed material parameters into a structure of type MaterialModel::MaterialModelOutputs. By default, material models will compute those parameters that correspond to the member variables of that structure. However, there are situations where parts of the simulator need additional pieces of information; a typical example would be the use of a Newton scheme that also requires the computation of derivatives of material parameters with respect to pressure, temperature, and possibly other variables.

The computation of such additional information is controlled by the presence of a collection of pointers in MaterialModel::MaterialModelOutputs that point to additional objects. Whether or not one needs these additional objects depends on what assemblers are selected, or what postprocessing one wants to compute. For the purpose of assembly, the current function creates the additional objects (such as the one that stores derivatives) and adds pointers to them to the collection, based on what this assembler class requires. This function is always called before the material model is evaluated and execute() is called. This ensures the additional material model output is available when execute() is called.

Reimplemented from aspect::Assemblers::Interface< dim >.


The documentation for this class was generated from the following file: