ASPECT
|
Functions | |
std::array< unsigned int, 3 > | indexed_even_permutation (const unsigned int index) |
SymmetricTensor< 2, 3 > | compute_voigt_stiffness_tensor (const SymmetricTensor< 2, 6 > &elastic_tensor) |
SymmetricTensor< 2, 3 > | compute_dilatation_stiffness_tensor (const SymmetricTensor< 2, 6 > &elastic_tensor) |
Tensor< 2, 3 > | compute_unpermutated_SCCS (const SymmetricTensor< 2, 3 > &dilatation_stiffness_tensor, const SymmetricTensor< 2, 3 > &voigt_stiffness_tensor) |
std::array< std::array< double, 3 >, 7 > | compute_elastic_tensor_SCCS_decompositions (const Tensor< 2, 3 > &unpermutated_SCCS, const SymmetricTensor< 2, 6 > &elastic_matrix) |
static const SymmetricTensor< 2, 21 > | projection_matrix_triclinic_to_monoclinic (Tensor< 2, 21 >({ {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, })) |
static const SymmetricTensor< 2, 9 > | projection_matrix_monoclinic_to_orthorhombic (Tensor< 2, 9 >({ {1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1} })) |
static const SymmetricTensor< 2, 9 > | projection_matrix_orthorhombic_to_tetragonal (Tensor< 2, 9 >({ {0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, {0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0}, {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0}, {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0} })) |
static const SymmetricTensor< 2, 9 > | projection_matrix_tetragonal_to_hexagonal (Tensor< 2, 9 >({ {3./8., 3./8., 0.0, 0.0, 0.0, 1./(4.*sqrt(2.)), 0.0, 0.0, 1./4. }, {3./8., 3./8., 0.0, 0.0, 0.0, 1./(4.*sqrt(2.)), 0.0, 0.0, 1./4. }, {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }, {0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0 }, {0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0 }, {1./(4.*sqrt(2.)), 1./(4.*sqrt(2.)), 0.0, 0.0, 0.0, 3./4., 0.0, 0.0, -1./(2.*sqrt(2.))}, {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0 }, {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0 }, {1./4., 1./4., 0.0, 0.0, 0.0, -1./(2.*sqrt(2.)), 0.0, 0.0, 0.5 } })) |
static const SymmetricTensor< 2, 9 > | projection_matrix_hexagonal_to_isotropic (Tensor< 2, 9 >({ {3./15., 3./15., 3./15., sqrt(2.)/15., sqrt(2.)/15., sqrt(2.)/15., 2./15., 2./15., 2./15. }, {3./15., 3./15., 3./15., sqrt(2.)/15., sqrt(2.)/15., sqrt(2.)/15., 2./15., 2./15., 2./15. }, {3./15., 3./15., 3./15., sqrt(2.)/15., sqrt(2.)/15., sqrt(2.)/15., 2./15., 2./15., 2./15. }, {sqrt(2.)/15., sqrt(2.)/15., sqrt(2.)/15., 4./15., 4./15., 4./15., -sqrt(2.)/15., -sqrt(2.)/15., -sqrt(2.)/15. }, {sqrt(2.)/15., sqrt(2.)/15., sqrt(2.)/15., 4./15., 4./15., 4./15., -sqrt(2.)/15., -sqrt(2.)/15., -sqrt(2.)/15. }, {sqrt(2.)/15., sqrt(2.)/15., sqrt(2.)/15., 4./15., 4./15., 4./15., -sqrt(2.)/15., -sqrt(2.)/15., -sqrt(2.)/15. }, {2./15., 2./15., 2./15., -sqrt(2.)/15., -sqrt(2.)/15., -sqrt(2.)/15., 1./5., 1./5., 1./5. }, {2./15., 2./15., 2./15., -sqrt(2.)/15., -sqrt(2.)/15., -sqrt(2.)/15., 1./5., 1./5., 1./5. }, {2./15., 2./15., 2./15., -sqrt(2.)/15., -sqrt(2.)/15., -sqrt(2.)/15., 1./5., 1./5., 1./5. } })) |
std::array<unsigned int, 3> aspect::Particle::Property::Utilities::indexed_even_permutation | ( | const unsigned int | index | ) |
Return an even permutation based on an index. This is an internal utilities function, also used by the unit tester.
SymmetricTensor<2,3> aspect::Particle::Property::Utilities::compute_voigt_stiffness_tensor | ( | const SymmetricTensor< 2, 6 > & | elastic_tensor | ) |
Computes the Voigt stiffness tensor from the elastic tensor. The Voigt stiffness tensor (see Browaeys and Chevrot, 2004) defines the stress needed to cause an isotropic strain in the material.
SymmetricTensor<2,3> aspect::Particle::Property::Utilities::compute_dilatation_stiffness_tensor | ( | const SymmetricTensor< 2, 6 > & | elastic_tensor | ) |
Computes the dilatation stiffness tensor from the elastic tensor The dilatational stiffness tensor (see Browaeys and Chevrot, 2004) defines the stress to cause isotropic dilatation in the material.
Tensor<2,3> aspect::Particle::Property::Utilities::compute_unpermutated_SCCS | ( | const SymmetricTensor< 2, 3 > & | dilatation_stiffness_tensor, |
const SymmetricTensor< 2, 3 > & | voigt_stiffness_tensor | ||
) |
Computes the Symmetry Cartesian Coordinate System (SCCS).
This is based on Browaeys and Chevrot (2004), GJI (doi: 10.1111/j.1365-246X.2004.024115.x), which states at the end of paragraph 3.3 that "... an important property of an orthogonal projection is that the distance between a vector \(X\) and its orthogonal projection \(X_H = p(X)\) on a given subspace is minimum. These two features ensure that the decomposition is optimal once a 3-D Cartesian coordinate system is chosen.". The other property they talk about is that "The space of elastic vectors has a finite dimension [...], i.e. using a different norm from eq. 2.3 will change distances but not the resulting decomposition.".
With the three SCCS directions, the elastic tensor can be decomposed into the different symmetries in those three SCCS direction, that is, triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, and isotropic (Browaeys & Chevrot, 2004).
The dilatation_stiffness_tensor defines the stress to cause isotropic dilatation in the material. The voigt_stiffness_tensor defines the stress needed to cause an isotropic strain in the material
std::array<std::array<double,3>,7> aspect::Particle::Property::Utilities::compute_elastic_tensor_SCCS_decompositions | ( | const Tensor< 2, 3 > & | unpermutated_SCCS, |
const SymmetricTensor< 2, 6 > & | elastic_matrix | ||
) |
Uses the Symmetry Cartesian Coordinate System (SCCS) to try the different permutations to determine what is the best projection. This is based on Browaeys and Chevrot (2004), GJI (doi: 10.1111/j.1365-246X.2004.024115.x), which states at the end of paragraph 3.3 that "... an important property of an orthogonal projection is that the distance between a vector \(X\) and its orthogonal projection \(X_H = p(X)\) on a given subspace is minimum. These two features ensure that the decomposition is optimal once a 3-D Cartesian coordinate system is chosen.". The other property they talk about is that "The space of elastic vectors has a finite dimension [...], i.e. using a different norm from eq. 2.3 will change distances but not the resulting decomposition.".
|
static |
The tensors below can be used to project matrices to different symmetries. See Browaeys and Chevrot, 2004.
|
static |
|
static |
|
static |
|
static |